This manual contains safety information that if ignored can endanger life or result in serious injury. They are indicated by this icon.

Keep the instrument protected from sun and water. Avoid water splashes.

OPERATING INSTRUCTIONS
FOR “LDPHTORB / TORBH” INSTRUMENT

with data logger software quick guide

ERMES COMMUNICATION
www.ermes-server.com

Read Carefully !

ENGLISH Version
R10-09-18
GENERAL SAFETY GUIDELINES

Danger! In emergencies the instrument should be switched off immediately! Disconnect the power cable from the power supply!

When installing always observe local regulations!

Manufacturer is not liable for any unauthorized use or misuse of this product that may cause injury, damage to persons and / or materials.

Caution! Instrument must be accessible at all times for both operating and servicing. Access must not be obstructed in any way!

Feeder should be interlocked with a no-flow protection device to automatically shut-off the pumps when there is no flow!

Pumps and accessories must be serviced and repaired by qualified and authorized personnel only!

Always discharge the liquid end before servicing the instrument!

Empty and rinse the liquid end before work on a pump which has been used with hazardous or unknown chemicals!

Always read chemical safety datasheet!

Always wear protective clothing when handling hazardous or unknown chemicals!

Instrument must be operated / serviced by trained technicians only!

All connection operations must be performed while the instrument is not connected to main supply!
1. Introduction

LDPHTORB/TORBH is a microprocessor based digital regulator for pH and Turbidity with temperature reading. On/Off, impulsive proportional, proportional PWM or fixed PWM are main working modes. Pulses per minute can be set for outputs. Working ranges are: pH: from 0 to 14pH - Turbidity: see probe’s scale. All information are provided through a large LCD display. Using a revolutionary wheel control the instrument can be easily programmed. LDPHTORB/TORBH is housed in a IP65 plastic box.

Inputs:
- Stand-by
- Flow
- pH (+) level
- pH (-) level
- Turbidity level
- pH probe
- Turbidity probe
- Temperature probe

Outputs:
- 2 relay outputs (pH and Turbidity)
- 3 opto coupled pulses outputs (pH and Turbidity)
- Main alarm

2. The wheel

Located in the upper right side of LDPHTORB/TORBH there is a wheel that must be used to control the instrument. Wheel can be rotated in both directions to scroll over the menus and / or pressed to confirm highlighted selection / value.

NOTE: Once changes are made press "OK" to save and exit from submenu. Press "ESC" to exit without saving.
3. Mainboard Connections

Unplug instrument from main power supply then perform connections by following the above picture.

A: Main Fuse (6A T)
B: Instrument Fuse (3.15A T)
C - D - E: Factory reserved +5V

L (Live) - E (Earth) - N (Neutral): 85÷264VAC - 50/60 Hz

1(Live) - E(Earth) - N(Neutral): 85÷264VAC - 5A 50/60 Hz Relay Output "CH1 RELAY PH". To use with ON/OFF or PWM device
2(Live) - E(Earth) - N(Neutral): 85÷264VAC - 5A 50/60 Hz Relay Output "CH2 RELAY NTU". To use with ON/OFF or PWM device
3(Live) - E(Earth) - N(Neutral): 85÷264VAC "Alarm output"
4(Live) - E(Earth) - N(Neutral): 85÷264VAC - 5A 50/60 Hz Relay Output “CLEANING PROBE”. For probe’s cleaning feature.

31(-) - 32(+): Current output mA2 for NTU
34(-) - 35(+): Current output mA4 for temperature
31(-) - 30(+): Current output mA1 for pH

Max resistive load: 500 Ohm

22(-) - 23(+): Opto coupled output “CH1 PH PULSE 2". To use with “IS” or “MF” series dosing pumps
24(-) - 25(+): Opto coupled output “CH2 NTU PULSE”. To use with “IS” or “MF” series dosing pumps
26(-) - 27(+): Opto coupled output “CH1 PH PULSE 1”. To use with “IS” or “MF” series dosing pumps

21(GND) - 28(+RS485) - 29(-RS485): RS485
14(+ Brown) - 15(Black) - 16(Blue) - 17(GND): Proximity sensor mod. “SEPR”

11(-) - 10(+): Standby contact
11(-) - 12(+): NTU Level contact
19(-) - 18(+): PH1 Level contact
19(-) - 20(+): PH2 Level contact

6(Green) - 7(Brown) - 8(White): PT100 temperature probe (remove jumper prior to install probe)

Warning: Connections must be performed by qualified and trained personnel only.
4. Main Screen

When into normal operating mode, LDPHTORB/TORBH shows the following main screen:

Main screen zones:

(1) UNITS
 “pH” is the measuring unit for pH probe.
 “NTU” is the measuring unit for Turbidity probe.

(2) VALUES
 These numbers are values read by the probes.

(3) OUTPUTS STATUS
 These fields are related to current outputs status and instrument activity.
 For more information rotate the wheel when into main screen. (see next page)

WARNING MESSAGE
NOTIFICATION AREA
 During critical situations a warning / alarm message may appear. To
 in-depth explanation completely rotate clockwise the wheel to review main
 instrument parameters and current outputs status.

 WHEN AN ALARM OCCURS (flow, level, dosage, faulty probe, setpoint) and
 “ALARM” appears on main screen all outputs are disabled.

Note: the word “PUMP” as shown into this manual refers to a “dosing device” connected to the instrument!
5. Quick status check

From main screen completely rotate clockwise the wheel to review main instrument parameters and current outputs status.

Local Time
Local Date
pH probe reading
NTU probe reading

Temperature probe reading
Dosing alarm condition
Probe failure status
Alarm contact status

Flow contact status (SEPR)
Tank Level 1 status
Last pH calibration result
Last pH calibration date

Last NTU calibration result
Last NTU calibration date
Last Temp. calibration result
Last Temp. calibration date

Outputs Status
See mainboard (page 4) for related connections.
6. Password

To grant access into “Main Menu” press the wheel from main screen and enter the passcode.
If this is the first time here then the passcode is 0000 (factory preset). Press wheel 5 times to enter into “Main Menu”.
Otherwise press the wheel 1 time and enter the passcode. Numbers can be selected rotating the wheel.

To set a new passcode choose “PARAMETERS” from “Main Menu”, move on “New Pcode”, click on wheel and enter a four numbers code. Click on “EXIT” and choose “YES” to save request. The new passcode is now ready.

Lost passcode?

Please don’t forget the passcode (if changed). In the unfortunate event, please call your local distributor for unlocking procedure. There is no way for you to recover lost passcode.
7. “Main Menu” list

To grant access into “Main Menu” enter the passcode (as described in previous chapter). Once into “Main Menu” rotate the wheel to scroll through all the options available.

- Setpoint (see page 9)
- Calibration* (see page 19)
- Parameters (see page 24)
- Output manager (see page 25)
- Instrument reset (see page 26)
- Dosing alarm (see page 27)
- International (see page 28)
- Probe Failure (see page 29)
- Flow (see page 30)
- Service (see page 30)
- Out of Range Alarm (see page 33)
- mA Outputs (see page 32)
- Log Setup (see page 31)
- Log View (see page 43)
- Self Clean (see page 36)
- RS485 Setup (see page 31)
- SMS menu (see page 40)
- TCP IP (see page 41)
- GPRS (see page 42)
- Email (see page 42)
- Modbus (see page 45)
8. “Set-Point”, pH working modes

For “CH1 PH PULSE 1” and “CH 1 PH PULSE 2” outputs, setpoint can be set between On/Off mode, Proportional (%) mode or disabled (OFF).
For “CH1 PH RELAY” output, setpoint can be set using On/Off mode, Proportional PWM mode, Fixed PWM mode or disabled (OFF).

8.1 “Set-Point”, pH (on/off)

This mode is valid for all pH related outputs. On/Off mode set the instrument to operate using two set values that enable or disable the pH pump. To use this mode move cursor on “Working Mode”. Press the wheel and select it.

ON/OFF mode while dosing ALKALI
Set pH value at 7.00 OFF and 6.90 ON. Set Pulse Speed per minute (strokes per minute) based on dosing device capabilities.
Instrument will leave the pH pump active until reading value will increase up to 7.00pH. At 7.00pH the pH pump will be disabled until reading value will decrease under 6.90pH.

Pulse speed: to let pump operate at pulses per minutes add one or more minute (1 pulse every xx minutes).
8.2 “Set-Point”, pH (on/off)

This mode is valid for all pH related outputs. ON/OFF mode while dosing ACID
Set pH value at 7.00 OFF and 7.10 ON. Set Pulse Speed per minute (strokes per minute) based on dosing device capabilities.
Instrument will leave the pH pump active until reading value will decrease up to 7.00pH
At 7.00pH the pH pump will be disabled until reading value will increase up to 7.10pH.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.

Did you know?

In chemistry, an alkali is a basic, ionic salt of an alkali metal or alkaline earth metal element. Alkalis are best known for being bases (compounds with pH greater than 7) that dissolve in water. The adjective alkaline is commonly used in English as a synonym for base, especially for soluble bases. This broad use of the term is likely to have come about because alkalis were the first bases known to obey the Arrhenius definition of a base and are still among the more common bases. Since Brønsted-Lowry acid-base theory, the term alkali in chemistry is normally restricted to those salts containing alkali and alkaline earth metal elements.

An acid (often represented by the generic formula HA [H+A−]) is traditionally considered any chemical compound that, when dissolved in water, gives a solution with a hydrogen ion activity greater than in pure water, i.e. a pH less than 7.0. That approximates the modern definition of Johannes Nicolaus Brønsted and Martin Lowry, who independently defined an acid as a compound which donates a hydrogen ion (H+) to another compound (called a base). Common examples include acetic acid (in vinegar) and sulfuric acid (used in car batteries). Acid/base systems are different from redox reactions in that there is no change in oxidation state.
8.3 “Set-Point”, pH (proportional)

This mode is valid for “CH1 PH PULSE 1” and “CH1 PH PULSE 2” outputs.

Proportional mode set the instrument to operate using a calculated percentage between two set values that enable or disable the pH pump. To use this mode move cursor on “Working Mode”. Press the wheel and select it.

PROPORTIONAL mode between 7pH(0 P/m) and 8pH (180 P/m). p/m is : pulses per minute
In this mode the pH pump will be “ON” for values greater than 8pH with maximum set pulses per minute capacity (e.g.: 180) and it’ll be “OFF” for values lower than 7pH. For values of 7.5pH pump will be “ON” with 90 pulses per minute capacity. The calculation is based on 180 pulses per minute setting (see page 22). To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
8.4 “PWM” (proportional), pH

This mode is valid for “CH1 PH RELAY” output only. Pulse-width modulation (PWM) of a signal or power source involves the modulation of its duty cycle, to either convey information over a communications channel or control the amount of power sent to a load.

This mode works over a settable (0 to 100 seconds) time to switch on or off selected output. During this time if reading value will move towards a set value (on or off) the PWM will operate the output on timered basis. Reaching the set value the PWM will permanently leave on or off the output.

Parameters to set for this mode are:

Unit Value + %: (time activity towards set value. 0% means 0 seconds. 100% means 100 seconds.)
pH range: two pH values within PWM operates.

For example: set first pH value at 8.00 = 100% and second pH value at 4.0 = 0%.
For reading values ≥ to 8.00 the output will be permanently ON.
For reading values ≤ 4.0 the output will be permanently OFF.

For reading value of 7.00 the output will be OFF for 25 seconds, ON for 75 seconds.
For reading value of 6.00 the output will be OFF for 50 seconds, ON for 50 seconds.
8.5 “PWM” (fixed), pH

This mode is valid for “CH1 PH RELAY” output only. Pulse-width modulation (PWM) of a signal or power source involves the modulation of its duty cycle, to either convey information over a communications channel or control the amount of power sent to a load. Using fixed mode is possible to set operating time to switch on or off selected output.

During this time if reading value will move towards a set value (on or off) the PWM will operate the output on timered basis. Reaching the set value the PWM will permanently leave on (for selected amount of time) or off the output.

Parameters to set for this mode are:

pH range: two pH values within PWM operates.
Ton: ON period, during output activity.
Toff: OFF period, during output activity.

For example: set first pH value (OFF) at 7.20.. Set second pH value (ON) at 8.00. Set “working-pause” output activity with Toff 0 seconds and Ton 40 seconds.

For reading values ≥ to 8.00 the output will be ON with activity based on Ton and Toff. For reading values ≤ 7.20 the output will be permanently OFF.

For reading values within working range operating mode is on HYSTERESIS base. Once reading value is 7.20 pH will be permanently off until it will reaches 8.00 pH.
8.6 “Set-Point”, NTU working modes

For “CH2 NTU PULSE” output, setpoint can be set between On/Off mode, Proportional (%) mode or disabled (OFF).
For “CH2 NTU RELAY” output, setpoint can be set using On/Off mode, Proportional PWM mode, Fixed PWM mode or disabled (OFF).

Pulse speed: to let pump operate at pulses per minutes add one or more minute (1 pulse every xx minutes).
8.7 “Set-Point”, NTU (on/off)

Set NTU value at 7.00 OFF and 7.10 ON. Set Pulse Speed per minute (strokes per minute) based on dosing device capabilities. Instrument will leave the NTU pump active until reading value will decrease up to 7 NTU. At 7.00NTU the NTU pump will be disabled until reading value will increase up to 10 NTU.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
8.8 “Set-Point”, NTU (proportional)

This mode is valid for “CH2 NTU PULSE” and “CH2 NTU RELAY” outputs.

Proportional mode set the instrument to operate using a calculated percentage between two set values that enable or disable the NTU pump. To use this mode move cursor on “Working Mode”. Press the wheel and select it.

PROPORTIONAL mode between 7NTU(0 P/m) and 8NTU (180 P/m). p/m is : pulses per minute
In this mode the NTU pump will be “ON” for values greater than 8NTU with maximum set pulses per minute capacity (e.g.: 180) and it’ll be “OFF” for values lower than 7NTU. For values of 7.5NTU pump will be “ON” with 90 pulses per minute capacity. The calculation is based on 180 pulses per minute settings. To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
8.9 “PWM” (proportional pwm), NTU

This mode is valid for “CH2 NTU RELAY” output only. Pulse-width modulation (PWM) of a signal or power source involves the modulation of its duty cycle, to either convey information over a communications channel or control the amount of power sent to a load.

This mode works over a settable (0 to 100 seconds) time to switch on or off selected output. During this time if reading value will move towards a set value (on or off) the PWM will operate the output on timered basis. Reaching the set value the PWM will permanently leave on or off the output.

Parameters to set for this mode are:

Unit Value + %: (time activity towards set value. 0% means 0 seconds. 100% means 100 seconds.)
NTU range: two NTU values within PWM operates.

For example: set first NTU value at 8.00 = 100% and second NTU value at 4.0 = 0%.
For reading values ≥ to 8.00 the output will be permanently ON.
For reading values ≤ 4.0 the output will be permanently OFF.

For reading value of 7.00 the output will be OFF for 25 seconds, ON for 75 seconds.
For reading value of 6.00 the output will be OFF for 50 seconds, ON for 50 seconds.
9 “PWM fixed”, NTU

This mode is valid for “CH2 NTU RELAY” output only. Pulse-width modulation (PWM) of a signal or power source involves the modulation of its duty cycle, to either convey information over a communications channel or control the amount of power sent to a load. Using fixed mode is possible to set operating time to switch on or off selected output.

During this time if reading value will move towards a set value (on or off) the PWM will operate the output on timered basis. Reaching the set value the PWM will permanently leave on (for selected amount of time) or off the output.

Parameters to set for this mode are:

pH range: two pH values within PWM operates.
Ton: ON period, during output activity.
Toff: OFF period, during output activity.

For example: set first pH value (OFF) at 7.20.. Set second pH value (ON) at 8.00.
Set "working-pause" output activity with Toff 0 seconds and Ton 40 seconds.

For reading values ≥ to 8.00 the output will be ON with activity based on Ton and Toff.
For reading values ≤ 7.20 the output will be permanently OFF.

For reading values within working range operating mode is on HYSTERESIS base. Once reading value is 7.20 NTU will be permanently off until it will reaches 8.00 NTU.
9.1 “Probe Calibration”, NTU

NTU calibration procedure for certain probes involves two calibration points and it requires two buffer solutions. Default buffer solutions are NTU 0 and NTU xx. (closer to working value). NTU reading value can be also compensated from “NTU compensation” menu. From “Menu Calibration” choose “NTU probe”. THIS MENU ISN’T AVAILABLE FOR TORBH PROBE. USING TORBH JUST CHOOSE THE SCALE ACCORDING TO PROBE’S CAPACITY.

If needed click on “DEFAULT” to reset turbidity channel calibration.

In the following example instrument will calibrate NTU using default buffer solutions values.

Note: this procedure assumes that instrument is correctly configured and a working NTU probe connected. Otherwise unattended results may occur.

Calib 1st Point or ZERO.

Once into “NTU Calibration” menu move wheel on “P1” then press wheel to enter into first point calibration submenu. Prepare 0 NTU buffer solution and dip probe’s sensor on it. Wait until reading value is stable and according to buffer solution value move wheel until it is the same on display (“Cal. at” field). Default value is 0 NTU. To end procedure move cursor on “OK” and press wheel to proceed to next step.

Choose “Default Cal” to restore calibration values to default settings.
9.2 “Probe Calibration”, NTU

Calib 2nd Point.

Move wheel on “P2” then press wheel to enter into second point calibration submenu. Prepare xx NTU buffer solution (it must be closer to working value) and dip probe’s sensor on it. Wait until reading value is stable and according to buffer solution value move wheel until it is the same on display (“Cal. at” field).

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
9.3 “Probe Calibration”, pH

pH calibration procedure involves two calibration points and it requires two buffer solutions. Default buffer solutions are pH 4.00 and pH 7.00. pH reading value can be also compensated from “pH compensation” menu. From “Menu Calibration” choose “pH probe”.

If needed click on “DEFAULT” to reset turbidity channel calibration.

In the following example instrument will calibrate pH using default buffer solutions values.

Note: this procedure assumes that instrument is correctly configured and a working pH probe connected. Otherwise unattended results may occur.

Calib 1st Point.

Once into “pH Calibration” menu move wheel on “P1” then press wheel to enter into first point calibration submenu. Prepare 7.00pH buffer solution and dip probe’s sensor on it. Wait until reading value is stable and according to buffer solution value move wheel until it is the same on display (“Cal. at” field). Default value is 7.00pH. To end procedure move cursor on “OK” and press wheel to proceed to next step.

Note: buffer solution value may change if environment temperature it’s different than 20°C. Read solution’s label for more information. According to this occurrence “pH Default” must be changed.

Choose “Default Cal” to restore calibration values to default settings.
9.4 “Probe Calibration”, pH

Calib 2nd Point.

Move wheel on “P2” then press wheel to enter into second point calibration submenu. Prepare 4.00pH buffer solution and dip probe’s sensor on it. Wait until reading value is stable and according to buffer solution value move wheel until it is the same on display (“Cal. at” field). Default value is 4.00pH.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.

Note: buffer solution value may change if environment temperature it’s different than 20°C. Read solution’s label for more information. According to this occurrence “pH Default” must be changed.
9.5 “Probe Calibration”, °C - Temperature

A professional thermometer is required to obtain a reliable calibration. From “Menu Calibration” choose “Temp probe”.

Note: This procedure assumes that instrument is correctly installed and configured, connected to a working PT100. Calibrate using plant’s temperature otherwise unattended results may occur.

Using an external thermometer read actual temperature and edit related field “Cal. at”. Confirm by pressing wheel.

Choose “Default Cal” to restore calibration values to default settings.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes. If an error occurred during calibration procedure then the instrument will show an error message and will ask to proceed to a new calibration, cancel current operation or restore default settings.
10. “Parameters”

From “Menu Calibration” choose “Parameters”. This menu allows to set a delay (max 60 minutes) before pumps begin to feed. Furthermore use this menu to set pH pump startup priority and to change default passcode.

Feeding Delay.
Move on “Feeding Delay” then press wheel. Choose a value between 0 (disabled) and 60 minutes (maximum delay time). This feature can be used to accord a startup delay for the pumps. Delay occurs when instrument is powered or after a “NO FLOW” contact recovery.

Mode.
Move on “Mode” then press wheel. If both pumps need to operate, a startup priority can be set to allow the pH pump to begin to feed prior to Cl pump. Choose “pH priority” to enable this function. Cl pump will begin to dose when pH pump has stopped.

Tau.
If probes reading values are changing too fast increase TAU value to stabilize them. Default value is 05. Maximum value is 30.

New Pcode.
See page 10.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
11. “Output Manager”

From “Menu Calibration” choose “Output Manager”. This menu allows to manually operate all outputs for a settable time. Set to “AUTO” for normal operating mode. Set to “OFF” to permanently disable outputs.

Press wheel to move cursor on “TIME” field. Once here, choose a working time between 0 (disabled) or 199 minutes. Move on “EXIT”, then press wheel.

Choose “YES” to save changes. Exit from main menu. Main display will show a countdown for selected output. To stop this countdown go back to “Output Manager” menu and choose “AUTO” as working mode or wait until countdown ends. This function can be used for priming purposes.
12. “Instrument Reset”

To restore instrument to its default values (including password) once into “Instrument Reset” menu, press wheel then change value to “ON”, press wheel again, move on “OK” then finally press wheel. The instrument display will show “CHECKSUM ERROR”. Press whell to return into “Main Menu”. Move on “EXIT”, then press wheel. The instrument is now restored to factory default. Please repeat all calibration procedures and programming parameters.
13. “Dosing Alarm”

Use this menu to assign a maximum time to the pumps for reaching the setpoint. If set time ends and the pumps are still dosing, within this menu is possible to STOP them or just to show an alarm message. Function can be disabled selecting “OFF” instead of a number (minutes). Dosing alarm can be set for both or just one pump.

E.g. To set pH pump to stop after time ends and setpoint isn’t still reached press wheel, choose maximum time, press wheel move on next field and choose “STOP”. Time can be set between 0 and 100 minutes. When satisfied with settings move on exit and press wheel.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
14. "International"

Use this menu to set international parameters as UNIT FORMAT (Europe IS or USA), Local Time and Date.

Format.

Use this option to use European or USA units format. See table for differences.

<table>
<thead>
<tr>
<th>EUOPE IS (International Standard)</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (DD/MMM/YY)</td>
<td>Date (MMM/DD/YY)</td>
</tr>
<tr>
<td>Time 24h</td>
<td>Time AM / PM</td>
</tr>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
</tbody>
</table>

Time.

Use this option to set local time.

Date.

Use this option to set date.

Move on exit to end changes.

To end procedure move cursor on "OK" and press wheel to proceed to "Save" request screen. Move wheel on "YES" to save or "NO" to discard changes.
15. “Probe Failure”

Use this menu to assign a maximum time for connected probes to stay in “stuck” condition. A stuck probe (it remains on same reading value for some time) means that probably probe itself is damaged. Within this menu is possible to STOP pumps or just to show an alarm message (probe failure). Function can be disabled selecting “OFF” instead of a number (minutes). This function can be set for both or just one probe.

E.g. To set pH pump to stop after time ends and probe doesn’t change reading values press wheel, choose maximum time, press wheel move on next field and choose “STOP”. Time can be set between 100 and 254 minutes. When satisfied with settings move on exit and press wheel.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.
16. “Flow Contact”

Flow contact (see “SEPR” blocks on page 4) can be enabled to stop a dosing procedure using a N.O. contact mode (normally open) or N.C. contact mode (normally closed) when status on blocks changes. Rotate wheel to choose between: “DISABLE”, “REVERSE” (N.O. contact) or “DIRECT” (N.C. contact).

Furthermore “Flow contact” can starts after a specified time when contact status changes. To set it move wheel on “Time:00 min”, click it and rotate to choose time (from 0 to 99 minutes). Confirm selection by clicking wheel.

To end procedure move cursor on “OK” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.

17. “Service”

This “view only” menu shows probes reading live and instrument ID for USB LOG connection (if device’s connected). Press “ESC” to exit.

Connection Code for ERMES (through USB cable)
Connection Code for ERMES (through LAN cable)
18. “Log Setup”

Log setup stores instrument activities when an alarm (flow, level, out of range reading, etc.) occurs.

Log activity recording can be started by moving wheel on “Mode: Disable” and changing it to “Mode: Enable”. Log activity starting time can be set to begin at specified time by entering “Time”. Activities data are collected every specified hour or minutes. Edit this parameter by moving wheel on “Every: 00:00” and changing it to desired time.

19. “RS485 Setup”

Prior to use advanced communication functions (e.g.: SMS alarm service or remote communication) the instrument must have a unique ID NUMBER (move wheel on “OK” to check it) and ID NAME (station name). Rotate wheel and edit fields. If ID number has already assigned an error message will follow. In this occurs try using another number.
20. “mA Outputs”

This menu allows to configure mA current outputs for pH, NTU and Temperature channels. Options to set are:

MODE (selectable between 0-20 or 4-20 mA current output)

Max mA: maximum probe’s reading value at 20 mA current

Min mA: minimum probe’s reading value at 0 or 4 mA current

Rotate wheel to move within all 3 channels. Click wheel to selecte parameter and rotate wheel to change it. Click wheel again and rotate wheel to move cursor on next parameter. To end procedure move cursor on “EXIT” and press wheel to proceed to “Save” request screen. Move wheel on “YES” to save or “NO” to discard changes.

This menu is available only for “LDPHxx” instrument series with current outputs option enabled.
21. “Out of range alarm”

“Out of range alarm” menu defines the minimum and maximum pH and Chlorine probe read value before to stop dosing activity and to show an alarm message.

Move wheel on "Min/Max pH Range" to set "out of range" condition for pH probe then click on wheel to enter into "Min/Max pH Range menu".

Move wheel on "pH Hi: Dis." and change status from "Dis." (option disabled) to "En." (option enabled) by clicking on wheel and rotating it. Press wheel again and move on next field. Press wheel and enter a value for HIGH alarm.

Repeat procedure for "pH Lo: Dis." and enter a value for LOW alarm.

As last option enter “Time” (max 99 minutes) after which if lower or higher read value condition stays then the alarm occurs (to set into mode field).

To change alarm mode move wheel on "Mode", press it and choose between "DOSE" (connected pumps will not stop dosing activity when read value is out of range) or “STOP” (connected pumps will stop dosing activity when read value is out of range and an alarm message is displayed).

Move wheel on "Min/Max NTU Range" to set "out of range" condition for NTU probe then click on wheel to enter into "Min/Max NTU Range menu”.

Move wheel on "NTU Hi: Dis." and change status from "Dis." (option disabled) to "En." (option enabled) by clicking on wheel and rotating it. Press wheel again and move on next field. Press wheel and enter a value for HIGH alarm.

Repeat procedure for "NTU Lo: Dis." and enter a value for LOW alarm.

As last option enter “Time” (max 99 minutes) after which if lower or higher read value condition stays then the alarm occurs (to set into mode field).

To change alarm mode move wheel on "Mode", press it and choose between "DOSE" (connected pumps will not stop dosing activity when read value is out of range) or “STOP” (connected pumps will stop dosing activity when read value is out of range and an alarm message is displayed).

Power supply: 85÷264 VAC
pH range: 0 ÷ 14 , NTU Range: 0 ÷ 999 see probe’s scale
Environment Temperature: -10 ÷ 45°C (14 ÷ 113°F)
Chemical Temperature: 0 ÷ 50°C (32 ÷ 122°F)
Installation Class: II
Pollution Level: 2
Packaging and Transporting Temperature: -10 ÷ 50°C (14 ÷ 122°F)
Protection degree: IP 65
23. SEPR configuration

SEPR “Flow Sensor” configuration for two instruments

Configuration of a Flow Switch with a voltage free contact and two instruments
Appendix - ETORBH probe module

Located under mainboard cover there are a connector that are used to install the probe module. Module come pre-installed upon request. Identify installed module to correctly connect probe.

Module suitable for:

ETORBH probe

Connect probe as follows (no extra cable):

1 Green
2 Yellow
3 Black
4 White
5 Brown

If probe is supplied with extra cable connect as follows:

1 Green
2 Yellow
3 Black + White
4 Blue
5 Brown + Red

This menu enable the embedded wiper for cleaning probe’s head.

Cycle Time: time to next cleaning procedure
Clean Time: overall time to perform cleaning procedure
Restore Time: time that probe needs to return usable after cleaning procedure
Appendix - ETORB probe module

Located under mainboard cover there are a connector that are used to install the probe module. Module come pre-installed upon request. Identify installed module to correctly connect probe.

Module suitable for:

ETORB probe

Connect probe as follows:

1 Blue
2 Brown
3 GND
4 White
5 Green

Appendix - ETORB2 probe module

Located under mainboard cover there are a connector that are used to install the probe module. Module come pre-installed upon request. Identify installed module to correctly connect probe. To assign a probe to a slot between the two available connecting the probe module to the required slot and repeating procedure for each module. Within calibration menu select “PROBES SLOT ASSIGN.” and assign the probe to the required SLOT setting it into “NEW SLOT” field. To change probe’s scale please refer to SELECT PROBE MENU within SETTINGS menu. (Options are: 40.00 - 400.0 - 4000.0 NTU). For probe cleaning menu see page 36.

Connect probe as follows:

1 (-485) WHITE wire
2 (+485) YELLOW wire
3 (GND) BLACK + BLUE wire
4 (+VDC) RED wire
Appendix Communication HARDWARE - “SMS/GSM” Module

Located under mainboard cover there is a four pins connector that can be used to install USB, ETHERNET or MODEM modules. Modules come pre-installed upon request and may appear different as shown (different configurations). “SMS/GSM module” can be configured to send SMS messages containing critical instrument information.

Up to three numbers for sending SMS can be stored into LDPHTORB/TORBH memory. SMS recipient will receive an SMS containing instrument ID, NAME and status. Number formats can be stored using international prefix “+”, international prefix “00” or local.

WARNING: THIS FUNCTION COULD NOT BE FREE OF CHARGE. DEPENDING ON YOUR OPERATOR CONTRACT IT COULD GENERATE PAYING SMS TRAFFIC!

To obtain reliable results with this feature please check the following list:
- Make certain the antenna location is not shielded by metal objects or near sources of electrical ‘noise’.
- Do not route the cable where it could be pinched in doors, windows etc.
- Secure the antenna cable
- Ensure that SIM into “SMS/GSM module” is properly inserted, activated and within operator range.
- Set instrument ID / NAME from “RS485 Setup” menu and configure “Out of Range Alarm” menu.

Within “Main menu” select “SMS MENU” to enable SMS service and enter SMS receiver phone numbers.

Up to three numbers for sending SMS can be stored into LDPHTORB/TORBH memory. SMS recipient will receive an SMS containing instrument ID, NAME and status. Number formats can be stored using international prefix “+”, international prefix “00” or local.

To enable warning message for related alarm condition choose “YES”, to disable choose “NO”. Then move wheel on Exit and SAVE configuration. SMS will be sent when one or more (“YES”) fields will change.

LPH1 or 2 : level alarm for PH1 or PH2 levels
LNTU: level alarm for NTU
FLOW: flow alarm
ALPH: out of reading range for pH probe
ALNTU out of reading range for NTU probe

WARNING: TO AVOID UNDESIRED MESSAGES USE CAREFULLY THIS SETUP!
Appendix Communication HARDWARE - “LOG USB” Module

Located under mainboard cover there is a four pins connector that can be used to install “USB data log module” or “SMS module”. Modules come pre-installed upon request and may appear different as shown (different configurations).

“USB data log module” records instrument activities. These information can be permanently stored into a standard USB pendrive. Pendrive can be connected to a PC using “ERMES” web www.ermes-server.com to review and print instrument’s activities.

To obtain reliable results with this feature please set instrument ID and NAME from “RS485 Setup” menu and activate log recording from “LOG SETUP” menu.

HOW TO RECORD INSTRUMENT’S ACTIVITIES INTO USB PENDRIVE?
Insert USB pendrive into USB connector (located on the right side of instrument). Instrument will save data log on USB pendrive. After succeeded in saving data it will ask if delete instrument’s log or not (anyway USB pendrive will not be formatted). Move wheel on “YES” to delete log info from instrument and return to main screen or “NO” to leave log info on instrument and return to main screen. **Wait about 30 seconds to safety remove the USB pendrive.**

HOW TO REVIEW INSTRUMENT’S ACTIVITIES RECORDED INTO USB PENDRIVE?
It’s necessary to connect to web “ERMES” www.ermes-server.com to review USB pendrive info on a PC.
Appendix Communication - Software

“RS485” menu.

Prior to install the instrument into an RS485 local system a unique ID NUMBER (from 1 to 30) and ID NAME (station name) must be set. Rotate wheel and edit fields. If ID number has already assigned an error message will follow after ID Check (move cursor on CHECK and press wheel). In this event try using another number.

“SMS” menu.

Instrument may remotely send SMS alarm messages using its own modem (sold as option). It can be configured as follows:

SMS1 / SMS2 /SMS3.

Using the wheel enter a mobile phone that will receive alert SMS messages if something wrong occurs. SMS number must be set using local number format. For example: 3391349134 will send an SMS message to mobile phone. Log level (and SMS frequency alert) may be set using options in “ACTIVE MSG” within “GSM menu”.

- TO AVOID UNDESIRED MESSAGES USE CAREFULLY LOG SETUP -

- WARNING: THIS FUNCTION COULD NOT BE FREE OF CHARGE. DEPENDING ON YOUR OPERATOR CONTRACT IT COULD GENERATE PAYING SMS TRAFFIC!
Appendix Communication - Software

“TCP/IP” menu.

The instrument may be remotely operated using a standard ethernet connection (sold as option). A static or dynamic IP address and a CAT5 ethernet cable is required. According to your network capacity connection speed is 10/100Mbps. To obtain a valid IP address and subnet mask contact your net administrator. Enter parameters and move cursor on “SAVE” to store parameters then move on “OK” and press wheel to save and activate configuration.

Based on your network configuration choose to obtain network parameters automatically (DYNAMIC) or manually (STATIC).

![Top Ip Menu](image)

See “ERMES Communication Software” manual for proper PC software configuration.

What is a static IP address/dynamic IP address?

A static IP address is a number (in the form of a dotted quad) that is assigned to a computer by an Internet service provider (ISP) to be its permanent address on the Internet. Computers use IP addresses to locate and talk to each other on the Internet, much the same way people use phone numbers to locate and talk to one another on the telephone. When you want to visit whatis.com, your computer asks a domain name system (DNS) server (think telephone information operator) for the correct dotted quad number (think phone number) for whatis.com and your computer uses the answer it receives to connect to the whatis.com server.

It would be simple if every computer that connects to the Internet could have its own static IP number, but when the Internet was first conceived, the architects didn’t foresee the need for an unlimited number of IP addresses. Consequently, there are not enough IP numbers to go around. To get around that problem, many Internet service providers limit the number of static IP addresses they allocate, and economize on the remaining number of IP addresses they possess by temporarily assigning an IP address to a requesting Dynamic Host Configuration Protocol (DHCP) computer from a pool of IP addresses. The temporary IP address is called a dynamic IP address.

Requesting DHCP computers receive a dynamic IP address (think temporary phone number) for the duration of that Internet session or for some other specified amount of time. Once the user disconnects from the Internet, their dynamic IP address goes back into the IP address pool so it can be assigned to another user. Even if the user reconnects immediately, odds are they will not be assigned the same IP address from the pool. To keep our telephone telephone analogy going, using a dynamic IP address is similar to using a pay phone. Unless there is a reason to receive a call, the user does not care what number he or she is calling from.

There are times, however, when users who connect to the Internet using dynamic IP wish to allow other computers to locate them. Perhaps they want to use CU-SeeMe or use a VoIP application to make long distance phone calls using their IP connection. In that case, they would need a static IP address. The user has two choices; they can contact their ISP and request a static IP address, or they can use a dynamic DNS service. Either choice will probably involve an additional monthly fee.

Using a dynamic DNS service works as if there was an old-fashioned telephone message service at your computer’s disposal. When a user registers with a DNS service and connects to the Internet with a dynamic IP address, the user’s computer contacts the DNS service and lets them know what IP address it has been assigned from the pool; the service works with the DNS server to forward the correct address to the requesting DHCP computer. (Think of calling the message service and saying “Hi. I can be reached at 435.44.32.111 right now. Please tell anyone who tries to reach me to call that number.”) Using a dynamic DNS service to arrange for computers to find you even though you are using a dynamic IP address is the next-best thing to having a static IP.
Appendix Communication - Software

“GPRS” menu.

Instrument may be remotely operated using an embedded standard GPRS modem (sold as option). In order to activate this service please ensure that the following steps are correctly completed:

- Make certain the antenna location is not shielded by metal objects or near sources of electrical ‘noise’.
- Make certain the distance from the antenna to the “Instrument” unit is within cable length.
- Do not route the cable where it could be pinched in doors, windows etc.
- Ensure that SIM into “Instrument” modem is correctly inserted, activated and within operator range.

Instrument can be set for ERMES services enabled (Configuration option set to “ERMES YES”) or messages only (Configuration option set to “ERMES NO”) based on your SIM data access parameters. For manual configuration option enter APN (access point name) and SIM phone number. Move wheel on “OK” to save and move on “ESC” to go back to main menu.

Don’t forget to enter SIM CODE into PIN NUMBER menu to unlock SIM.

WARNING: THIS FUNCTION COULD NOT BE FREE OF CHARGE. DEPENDING ON YOUR OPERATOR CONTRACT IT COULD GENERATE PAYING DATA TRAFFIC !

“Email” menu.

If Ethernet module or GPRS module is installed (sold as option) the instrument can be configured to send email alarm messages up to two recipients. Click on “Email 1” or “Email 2” and enter email address.

Access point name (APN) identifies an IP packet data network (PDN), that a mobile data user wants to communicate with. In addition to identifying a PDN, an APN may also be used to define the type of service, (eg connection to wireless application protocol (WAP) server, multimedia messaging service (MMS)), that is provided by the PDN. APN is used in 3GPP data access networks, eg general packet radio service (GPRS), evolved packet core (EPC).
Appendix Communication - Software

“LOG” menu.

This function records instrument activity (date, hour, temperature, uS, totalizer I/O, alarms, outputs). It starts for selected frequency period (every) at requested time (time). SET DATE & TIME BEFORE TO ENABLE LOG. IF NOT POWERED FOR ABOUT 30 DAYS THE INSTRUMENT WILL LOOSE DATE/TIME

Set ACTIVE to “enabled” to activate log recording.

TIME: recording start time (time format 23h e 59min)

EVERY: recording frequency (time format 23h e 59min)

Note: advanced log control (graph, printing, comparison tables, event filtering, etc) is available through “ERMES Communication Software” for PC.

See “ERMES Communication Software” manual for proper PC software configuration.

“LOG VIEW” menu.

To see alarm log entries as set on log menu choose “log view” on main menu.
Appendix - Dimensions
Appendix - MODBUS

Modbus is a serial communications protocol originally published by Modicon (now Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs). Simple and robust, it has since become a de facto standard communication protocol, and it is now a commonly available means of connecting industrial electronic devices.

From main menu select COMMUNICATION then MODBUS to access the options. Set the communication speed according to the PLC system available. Set the ID assigning an UNIQUE address to avoid conflicts.

To access the module MODBUS open the instrument only after power is switched off!

Never make connections with the instrument powered!

1: GND
2: A-RS485 (+)
3: B-RS485 (-)
Index

1. Introduction .. 3
2. The wheel ... 3
3. Mainboard Connections .. 4
4. Main Screen ... 5
5. Quick status check ... 6
6. Password .. 7
7. “Main Menu” list ... 8
8. “Set-Point”, pH working modes ... 9
 8.1 “Set-Point”, pH (on/off) ALKALI ... 9
 8.2 “Set-Point”, pH (on/off) ACID .. 10
 8.3 “Set-Point”, pH (proportional) .. 11
 8.4 “PWM” (proportional), pH ... 12
 8.5 “PWM” (fixed), pH ... 13
 8.6 “Set-Point”, NTU working modes ... 14
 8.7 “Set-Point”, NTU (on/off) .. 15
 8.8 “Set-Point”, NTU (proportional), NTU ... 16
 8.9 “Set-Point”, NTU (proportional pwm), NTU 17
 8.10 “Set-Point”, NTU (fixed pwm), NTU ... 18
 8.11 “Probe Calibration”, NTU ... 19
 8.12 “Probe Calibration”, pH .. 21
 8.13 “Probe Calibration”, °C - Temperature .. 23
10. “Parameters” ... 24
11. “Output Manager” .. 25
12. “Instrument Reset” .. 26
13. “Dosing Alarm” .. 27
14. “International” ... 28
15. “Probe Failure” ... 29
16. “Flow Contact” ... 30
17. “Service” ... 30
18. “Log Setup” ... 31
19. “RS485 Setup” .. 31
20. “mA Outputs” .. 32
21. “Out of range alarm” .. 33
22. Technical information .. 34
23. SEPR configuration ... 35
Appendix A - ETORBH probe series module ... 36
Appendix B - ETORB probe series module .. 37
Appendix Communication HARDWARE - “SMS/GSM” Module 38
Appendix Communication HARDWARE - “LOG USB” Module 39
Appendix Communication - Software ... 40
Appendix - Dimensional Draw ... 44
Appendix - Modbus ... 45

Information on this manual may contain technical inaccuracies or typographical errors.
The information contained may be changed at any time without prior notification or obligation.
When dismantling this instrument please separate material types and send them according to local recycling disposal requirements. We appreciate your efforts in supporting your local Recycle Environmental Program. Working together we’ll form an active union to assure the world’s invaluable resources are conserved.